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Numerical Solution of Differential Equations 
with Colored Noise 

G. N.  Milshtein and M. V. Tret'yakov ~ 

Received October 5, 1993; final May 2, 1994 

Using the general theory of numerical integration of stochastic differential equa- 
tions, a constructive approach to numerical methods for a system with colored 
noise is proposed. Efficient methods up to the 5/2 strong order and up to the 
third weak order, including Runge-Kutta and implicit schemes, are presented. 
The algorithms are tested on the Kubo oscillator. 
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methods. 

1. I N T R O D U C T I O N  

Stochastic differential equat ions  (SDE)  have found appl icat ions  in many  
fields of research, 1~-51 including chemical  physics, laser noise problems,  
combust ion,  mathemat ica l  b iology,  etc. The simplest  approx imat ion  of  real 
f luctuations that  affect a physical  system is Gauss ian  white noise. However,  
Gauss ian  white noise, or  a Gauss ian  del ta-corre la ted r andom process, is a 
stochastic process with zero correla t ion time and infinite variance,  so it is 
an unreal  process which has no evident physical  sense. Such a r andom pro-  
cess may be considered only as the first approx imat ion  of  real fluctuations 
with a short  corre la t ion time. 16"71 This shor tcoming is overcome by colored 
noise (f ini te-bandwidth noise). ~'6~ Recently several authors  have studied 
exponent ia l ly  corre la ted colored noise. The investigation of  systems with 
colored noise was s t imulated to a large extent by the occurrence of 
corre la ted pump  noise in dye lasers. ~3~ Analyt ical  results have been 
obta ined  for weakly ~8~ and highly (s trongly)  t91 colored noise. Appearance  
of  nonl inear  and complex stochastic differential equat ions in theoretical  

~Department of Mathematics, Ural State University, Ekaterinburg, 620083, Russia. 
svt @ thphys.urgu.e-burg.su. 

691 

0022-4715/94/1100-0691507.00/0 �9 1994 Plenum Publishing Corporation 



692 Milshtein and Tret'yakov 

models has led to the necessity for numerical simulation of such SDE. 
Different algorithms for differential equations with colored noise have been 
proposed/]o-~3~ 

Herein we apply common methods of the theory of numerical integra- 
tion of SDE ~]4'~5~ to differential equations with exponentially correlated 
colored noise 

d r = f (  10 dt + G( Y)Z dt 
q 

d Z = A Z d t +  Z brdWr 
r = l  

( l . l )  

where Y and f are one-dimensional vectors, Z and br are m-dimensional 
vectors, A is an m x m matrix, G is an l xm  matrix, and Wr are 
uncorrelated standard Wiener processes. In the one-dimensional case 
Eqs. ( 1.1 ) are rewritten in the form 

dy = f ( y )  dt + g(y):  dt 

& = - a z  dt + b dW 
(1.2) 

where z is the well-known Ornstein-Uhlenbeck process, or exponentially 
correlated colored noise, with the properties 

b2 
( z ( t ) )  =0,  (z( t)  z(s)) =~a  exp(--a  I t - s l )  (!.3) 

The system (1.1) is simpler than the general one [see (2.1)] by two 
reasons: (1) (l.1) is a system with additive Gaussian white noises, 
(2) Eqs.(1.1) are linear with respect to Z. That is why comparatively 
simple high-order methods may be constructed for numerical solution of 
differential equations with colored noise. 

In the earlier works (~~ authors obtained efficient (as to simulation 
of the used random variables) explicit algorithms up to the second order in 
the strong sense for the numerical integration of colored noise problems. 

Here for the first time on the basis of the general theory various 
methods for the system (l.1) are easily obtained. We create strong explicit 
methods up to the 5/2 order in which random variables are simulated in a 
simple way. Let us note that in the case of a general stochastic system [see 
(2.1)] the first-order strong schemes already require calculation of repeated 
Ito integrals, which is a difficult and laborious problem, (141 and the result- 
ing algorithms become overly unwieldy and inefficient. Fortunately, thanks 
to the special features of the system (1.1), we succeeded in constructing 
efficient high-order methods for the numerical solution of differential equa- 
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tions with colored noise. Moreover, we present efficient implicit and 
Runge-Kutta schemes up to the second order. We give particular attention 
to efficient weak approximations of the solution of system (1.1) and obtain 
weak explicit schemes up to the third order, weak implicit methods up to 
the second order, and explicit and implicit Runge-Kutta schemes. 

The paper is organized as follows. In Section 2 some needed facts of 
the general theory of numerical integration of SDE are formulated. They 
are useful for derivation of the numerical methods of Sections 3 and 4. This 
section is based on refs. 14 and 15, which contain the results of the well- 
developed modem theory of numerical integration of SDE. In contrast to 
the deterministic case, for stochastic equations we can consider various 
types of approximations; the most common and useful in practice are 
mean-square (strong) and weak approximations. The first investigations of 
strong approximations were reported in refs. 16 and 17, while refs. 18-20 
are the first studies on weak approximations. In Section 3 strong algo- 
rithms for a system with colored noise are presented. Section 4 is devoted 
to weak schemes. In Section 5 numerical tests of the presented methods are 
discussed. We restrict ourselves to the full proof of only one strong method, 
namely the trapezoidal scheme (see Appendix). Other methods may be 
proved in a similar way. 

2. SOME NEEDED FACTS OF THE GENERAL THEORY 
OF SDE NUMERICAL  INTEGRATION 

In this section we shall be concerned with the common system of the 
Ito equations 

q 

d X ' = a ' ( X )  dt + ~ a~(X)dW~(t)  
r = !  

Xi( to)=Xio,  t e [ t  o, T] ,  i=  1 ..... n 
(2.1) 

Note that the initial value X 0 = X(to) may have either a sharp (deter- 
ministic) value or it may already be a stochastic variable, the probability 
of which follows from the initial distribution. For instance, the initial value 
zo of the Ornstein-Uhlenbeck process (1.2)-(1.3) is distributed as a 
Gaussian variable with zero mean and variance b2/(2a). 

Let a discretization of the interval [to, T]  be defined as S u =  
{ ti: O, t ..... N; to < t~ < . . .  < tu = T}. Below we use the following notation: 
the time increment h = t i +1 - t i ,  the approximation X k or .((tk) of the exact 
solution X(tk), operators 
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r = l  

i 0 1 i y 
- =,a - ~ + ~  OrOr OX, OXJ 

r = l  i , j = l  ( o) ,o 
A~= a ~ , - ~  = O~OX ~ 

i = 1  

and Ito integrals 

f t k + h  0 
i , , , ,  f.i' f,i 

. . . . . . .  ~ ~tk 

where i~ ..... ij are from the set of numbers {0, 1 ..... q} and dWo(Or) is equal 
to dO r. 

2.1. Strong Approximat ion 

Definit ion 1. If the inequality 

[ ( IX( tk ) -  Xkl2> ]l/z <~ Ch p (2.2) 

holds for a numerical method, where C does not depend on k and h, and 
p is greater than zero, the mean-square order of the method is equal to p. 

It must be mentioned that C in (2.2) depends on initial values Xo. 
An important practical application of the strong approximations is the 

direct simulation of stochastic dynamical systems. Direct simulations of tra- 
jectories of SDE can provide useful information on the qualitative behavior 
of a model. Another practical application of mean-square approximations 
is to the problem of estimating parameters. Note that strong methods are 
also the basis for the construction of weak ones. 

A theorem on the relation between the order of one-step strong 
approximation and the mean-square order of the corresponding method on 
the whole interval has been proposed in refs. 14 and 21 and here it is only 
stated: 

Theorem 1. Let us assume that the one-step approximation 
)((t + h) satisfies the inequalities 

[( X(t + h ) -  X(t + h) )l ~<K(1 + Ixl2)~/2 h p' 

[ ( [X(t + h) - .~(t + h)12> ] I/2 ~ K( 1 + Ixl2) 1/2 h p2 



Differential Equations with Colored Noise 695 

where 

X(t)=X(t)=x, t~[to, T-h], xeR', p2>/�89 P i ) P 2 + � 8 9  

Then 

[ (IX(tk) - )?(tk)l 2) ] 1/2 ~< K( 1 + ( IXo 12 ) ),2 h":-  ,2 

for any N and k =  0, 1 ..... N, i.e., the mean-square order of the method, 
I based on the one-step approximation X(t + h), is equal to p = P2 2. 

In refs. 14, 15, and 17 a formula of the Taylor type for expanding the 
solution of a stochastic differential equation about the points of a time 
partition has been obtained. The formula is named the Wagner-Platen 
expansion. Let us describe the rule of construction of the Wagner-Platen 
expansion. According to the Ito formula, a sufficiently smooth function 
f(x) is written as 

f,o 
f(X(O))=f(X(t))+ Arf(X(O]))dW,(O,)+ Lf(X(O,))dO, (2.3) 

• = 1  

where X(t) is a solution of the system (2.1), to ~< t ~< 0~< T. The second and 
the third terms of (2.3) also may be represented by the Ito formula [for 
instance, 

q 

Arf(X(O,) = A,f(X(t)) +s~, f~' AsA'f(X(02)) dW~(O2) 

+ r ~ 
d t  

and therefore 

0 
ft OArTNWr(OI)=ArU(X(t)) fl dWr 

s = l  

then substituted in the expression (2.3) and so on. Thus, we have obtained 
the Wagner-Platen expansion, ('4' 15. ~vl which is similar to the Taylor expan- 
sion in the deterministic case. If function f(x) is equal to x, then Lf-a,  
At f--a,,  and 
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q q 

X ( t + h ) = X ( t ) +  ~ a r l r + a h +  y" A,arI,~ 
r f f i  I r , i =  1 

q q 

+ ~ La~Io,+ ~ A , a I ,  o 
r = l  r = l  

q q q 1-12 

"Jr E E E A,Ai~rrl.~ir + La -~"b  
r = l  i = l  s = l  

(2.4) 

where the remainder p is easily calculated by the described rule. 

2.2. Weak Approximation 

Definit ion 2. )((t) approximates the exact solution X(t)  in the 
weak sense with order p if 

[ ( f ( ) ( ( t ) ) )  - ( f ( X ( t ) ) ) [  = O(hP), tE [to, T ]  (2.5) 

for any sufficiently smooth funct ions 
The weak approximations are of great importance; first, they are suf- 

ficient for most physical problems, and second, they are simpler and more 
constructive than the strong ones. Weak numerical methods can be used 
for calculations of statistics of stochastic processes (for instance, mean 
value, variance, mean first passage time, etc), Wiener functional space 
integrals, for solving problems of mathematical physics by Monte Carlo 
technique, etc. Weak approximations use random variables, which are 
easily simulated, and include much fewer terms with operators than do 
strong methods. 

Similar to Theorem 1, a theorem on the relation between the proper- 
ties of the one-step weak approximation and the weak order of a method 
on the whole interval has been obtained. 1~4'~s'~9'2~ According to this 
theorem, the weak order of the method is equal to p if 

A - 6  -- A i, <~ Ch p+t 
j = l  

where A = X( t + h ) -- x, A = X( t + h ) - x, X( t ) = X( t j = x, and s =  
1 ..... 2p + 1. In refs. 14, 15, 19, and 20 one can find the full formulation of 
the theorem. 
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3. STRONG METHODS FOR DIFFERENTIAL EQUATIONS 
WITH COLORED NOISE 

For the system (1.1) operators the L and A~ take the form 

1 8 2 
+5 E 6:b o:'ozJ 

r = l  i , j = l  

In the one-dimensional case for the system (1.2) they are 

d d 6 2 d 2 
L = [ f ( y )  + g(y)z]  ~y -- a: dz + -2 c~ - - I  

d 
A =b--~z 

(3.1) 

(3.2) 

3.1. Strong Explicit Schemes 

The simplest method is the first-order explicit one 

r ,+,  = Y, + h [ f  + G Z ] ,  
q (3.3) 

Z * + l = Z k +  ~ br~rkh]/2+hAZ, 
r = l  

which can be proved by Theorem 1. Here Gk are independent normally dis- 
tributed N(0, 1) random variables. The scheme(3.3) is the well-known 
Euler method for the system ( 1.1 ) with colored noise, which was presented 
by Fox et alJ 22) who also proposed another first-order algorithm for dif- 
ferential equations with colored noise which was based on the exact solu- 
tion of the Ornstein-Uhlenbeck process. Later, using this approach, Fox (12) 
derived the second-order scheme. Let us remark that using Theorem 1 one 
can prove that if the Gaussian process G2 of Fox's scheme ~]2) is neglected, 
the strong order of this method would be still equal to 2. Nevertheless, the 
inclusion of G2 does not lead to an increase of the scheme's order. It should 
be noted that as we know (for instance, refs. 10-12), nobody has rigorously 
proved the order of presented methods on the whole interval for a system 
with colored noise. 

Using the Wagner-Platen expansion (2.4) and Theorem 1, we obtain 
the second-order explicit strong scheme for differential equations with 
colored noise ( 1.1 ): 



698 Milshtein and Tret'yakov 

q 
Yk+, = Y k + [ f  + G Z ] ~ . h + G k  ~ brIro~ 

r=l 

h 2 
+-~- [(f'~, + ( GZ) ' r ) ( f  + GZ) + GAZ]k  (3.4) 

Zk + l = Zk + brlr~, + AZkh  + A b,.I,.o~ + - f  A2Zt,. 
r = l  r = l  

where f k = f ( Y k ) ,  Gk=G(Yk) ,  f ' r  is a Jacobian matrix, (GZ)'r= 
[G'y, ZG'y2Z. . .  G'~,Z] is an Ix I matrix, Irk -- ~rkh ~/2, and Iro n = �89 + 
qrk/X/3). Here ~r~ and qrk are independent random variables with standard 
normal distribution N(0, l). In the one-dimensional case the method (3.4) 
becomes 

Yk+ I = Yk + I f +  gz]k h + gkb(~k +rlk/x/~ ) h3/2/2 

+ hZ[(f  ' + g ' z ) ( f +  gz) - gaz]k/2 (3.5) 

Zk + I = Zk + b~kh z/z _ aZkh _ ab( ~k + qk/x//3 ) h3/Z/2 + hZaZzk /2 

In contrast to the Fox's second-order method, ~2) in which he exactly 
simulated an Ornstein-Uhlenbeck process, our second-order explicit 
scheme (3.4) approximates Z with the same order as Y and so allows us to 
solve more general systems. Probably, the laboriousness of both methods 
is comparable. 

If we add three terms to the second-order scheme (3.4), we obtain the 
5/2-order strong algorithm 

q q 

]rk+l=Yk+'"l- 2 [(Gb~) 'r( f  +GZ)]klo~ok+ ~ [ f ' rGbr+GAbr  
r f l  r = l  

+ A , { ( a z ) ' r f +  (GZ)'r GZ} ]k Irook 

h 3 
+--~ [ L 2 ( f +  GZ)]k (3.6) 

t,-' 
Z k  + l = Z k  + l "{ - A2b,.Iroo~, +--~  A 3 Z k  

r = l  

where Yk+l and Zk+~ are taken from (3.4), 

Ioro = 2Jr -- hI,.o, I,.oo = hl,.o - J,. 

J "  = tYJo' v w ~ ( v )  dr, Iro ---- h3/2(~, .  -I'- q,/v/~)/2 

J, = hS/2[~,/3 + q J (4  x/"3) + (,/( 12 v/5)] 
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~,, tl,, and ~'~ are independent random variables with standard Gaussian 
distribution N(0, 1) which are simulated at each step. 

As mentioned above, for a general system (2.1) only the l/2-order 
strong methods may be obtained with easily simulated random variables. 
The higher-order methods need numerical solution of a special system of 
SDE at each step for the simulation of the Ito integrals or some 
approximation of repeated Ito integrals in the case of the first-order 
scheme. (14) However, for the system with colored noise (1.1) efficient strong 
methods up to the 5/2 order are derived according to the special properties 
of the system (1.1). By the way, third-order schemes for the system (1.1) 
require calculation of repeated Ito integrals, and in the case of nonlinear 
functions f and G it is impossible to obtain an efficient third-order strong 
method with easily simulated random variables. 

3.2. R u n g e - K u t t a  St rong Schemes 

To reduce calculations of derivatives, we propose the explicit second- 
order strong Runge-Kutta scheme 

q 
Yk +1 = }I, + h{ [ f +  GZ], + [ f +  GZ]~}/2 + ~ a,b,h3/2q,Jx/r-~ 

~=l (3.7) 
q q 

Zk+,-----Zk+ E b,r +hA{Z* + Z~}l 2 + E Ab,h3/ZrlrJx/~ 
r ~ l  r = l  

where 

f~ =f(Y[,), G~ = G(Y~), Y[, = Yk + ( f  + GZ)k h 
q 

Zf.-= Zk + E br~rkhl/2 + AZk h 

This algorithm has been derived by the substitution of the expansions 

q 

( [ f +  GZ]r, + [ f +  GZ],)/2 = [ f +  GZ]k + E Gkb,r 
r=l 

+ L [ f  + GZ], h/2+p~ 
q 

(A Z~ + A Zk )/2 = A Z ,  + ~ A b, ~ r, h ~/2/2 + h A 2Z,/2 

( P l )  = O ( h 2 ) ,  [ ( , 0 2 )  ] 1 / 2  0(h312) 

(3.8) 

in the second-order scheme (3.4). 
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The Runge-Kutta scheme (3.7) does not include any derivatives; 
thanks to the special properties of the system (1.1) it is a "fully" 
Runge-Kutta algorithm. 

The 5/2-order explicit method (3.6) may be simplified by the idea of 
attracting a subsidiary system of deterministic equations, c]4~ One has dif- 
ficulties in the calculation of some terms of the method (3.6), for instance, 
[ f ' r+ (GZ)'y][f+ GZ] and L Z [ f +  GZ]. Fortunately, these terms may be 
calculated by attracting the following subsidiary system: 

dY/dt= F( Y, Z), dZ/dt= AZ (3.9) 

where F(Y, Z ) = f (  Y)+G(Y)Z. The system (3.9) may be solved by any 
deterministic third-order Runge-Kutta rule. Substituting a numerical solu- 
tion of (3.9) in the scheme (3.6), we obtain the 5/2 "semi"-Runge-Kutta 
method: 

KI = hF( Yk, Zk) 

K2 = hF( Yk + Kt/2, Zk + hAZk/2) 

K3 = hF( Y~ - Kl + 2K2, Zk + hAZk + h2A2Zk) 
q 

Yk+~ = Yk+[K~+4K2+K3]/6+Gk ~. brI, Ok 
r=l 

q 
+ E [(Gbr)'Y ( f +  G Z ) ] k  Iorok 

,=l (3.10) 
q 

+ ~ [f'vGb, + GAbr + A~{(GZ)'vf+ (GZ)'r GZ} ]~. lroo~ 
r=l 

+ -~ [(Gbr)'V Gbr]x. 
r=] 

h ~ 
Z k + , = Z k +  ~ b,I,k + AZkh + A ~ brl, ok + - f  AzZk 

r = l  r ~ l  

h 3 
+ ~. A2b,l, ook+-~A3Zk 

r = l  

where the needed Ito integrals are simulated in the same way as in (3.6). 
The correctness of the method (3.10) is proved by Theorem 1. Obviously, 
the algorithm (3.10) is simpler than (3.6). In contrast to the method (3.6), 
the scheme (3.10) does not include the second derivatives of functions f and 
G, and it also contains much fewer terms than (3.6). In the particular case 
of linear funct ionsfand G the method (3.10) becomes a fully Runge-Kutta 
scheme. 
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3.3. St rong Implici t  Schemes 

For a stiff system it would be useful to have implicit methods. 
A family of the first-order implicit methods (impicit Euler schemes) 

has the form 

Yk+,= Yk+oth[f +GZ]k+(l - -oOh[f  +GZ]k+, 
q (3.11) 

Z,+1 =Zx-+ ~ b,~r, hl/2+o~lAZk+(l-~)hAZ,+I 
r = l  

where ~rk are independent normally distributed N(O, 1) random variables, 
and O~<0c~< 1. 

We also present the two-parameter (~ and fl) family of second-order 
implicit schemes 

Y,+I = Yk+oth[f +GZ] ,+(  1 - ~ ) h [ f  +GZ],+, 
q 

+h 3/2 ~. G, br((2o~- 1) ~rk/2 
r = l  

+ qrk/X/~) + fl(2~-- 1) h2L[f+ GZ]k/2 

+ (1 - f l ) (2~-  1 ) h2L[f+ GZ], + ~/2 
q (3.12) 

Zk+ I = Zk + ~ br~k hl/2 + otlzAZk + (I -~x) hAZk+ 
r = l  

q 

+h 3/2 ~ Ab,((2~- 1) ~k/2 
r = l  

-~ ~ ] r k / ~ / ~ )  + fl(2a -- 1 ) h2A2Z,/2 

+ (1 - f l ) ( 2 ~ -  1) h2A2Z,+ i/2 

where ~r* and q,x. are independent, normally distributed N(0, 1) random 
variables, and 0 ~<oc ~< I, 0 ~<fl~< 1. The family (3.12) is derived by repre- 
senting the terms I f +  GZ], and AZk of (3.4) in the form 

[ f  +GZ]k=ot[f  +GZ]k+(1--oO{[f +GZ]k+, 
q 

-- ~ Gkbr~khl/2-hL[f +GZ], +P~} 
~=1 (3.13) 
�9 ( ) AZk=~AZ,+(1-0~) AZk+ I -  Abr~khl/2--hA2Zk+P2 

r = l  

(Pi> ----- O(h2), [ (p2> ] I/2= 0(h3/2), i= 1, 2 

822/77/3-4-13 
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and with the expressions 

LEf + GZ]k--flL[f +GZ]k+(1 --fl) L [ f  +GZ]k+l +P3 

A 2 Z k  = flA EZk + ( l -- fl) h E Z k  + l + P4 (3.14) 

<p~> = O(h),  [ (p2> ] 1/2 = O(ht/2), i= 3, 4 

The approach to derivation of such implicit methods as (3.12) was first 
presented in ref. 14, where 3/2-order implicit schemes for a general system 
with additive noises were obtained. In spite of the general case, the implicit 
methods (3.12) are of the second order thanks to the special properties of 
the system (1.1) with colored noise. If we choose ~ =  1/2 in (3.12), we 
obtain the simplest scheme of the family (3.12), which is called the 
trapezoidal method: 

Yk+t  = Yk + h { [ f  +GZ]k + [ f  - b G Z ] k + l } / 2  
q 

q- h 3/2 ~.~ Gkbrl~rk/N//-~ 

r=1 (3.15) 
q 

Zk+t=Zk + ~ b~rkh'/2 +hA[Zk + Zk+t]/2 
r = l  

q 
+ h3:2 E Ab:l,k/x/~ 

r=l 

The random variables ~,k and r/,k are independent and normally distributed 
N(0, I). The Appendix gives a proof of the trapezoidal method (3.15). 

It is also possible to construct an implicit Runge-Kutta method. 

4. WEAK SCHEMES FOR SYSTEMS WITH COLORED NOISE 

Several weak methods for the differential equations with colored noise 
(1.1) are presented in this section. They are second- and the third-order 
explicit schemes, and implicit and Runge-Kutta algorithms. The methods 
may be derived using the corresponding strong schemes of Section 3 and 
the theorem on the relation between the properties of the one-step weak 
approximation and the order of the method. (14"15' 19.20) 

4.1. Weak Explicit Schemes 

The first-order weak method coincides with the Euler scheme. 
The second-order explicit weak method is 
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q 
Yk+l = Y k + [ f  +GZ]kh+h3/ZGu ~ b,.~rJ2 

r = l  

+ h2[ (fir + (GZ)'r)(f  + GZ) + GAZ] k/2 (4.1) 

q q 

Zk+l=Zk +hI~2 L br~"k + AZk h+h3/2A ~ br~,.k/2 +h2A2Zk/2 
r = l  r = l  

where ~rk are independent random variables with standard normal dis- 
tribution N(0, 1) or distributed according to the laws P ( ~ = 0 ) = 2 / 3 ,  
P ( ~ = - q / - 3 ) = P ( ~ = ~ / 3 ) =  1/6, where P is the probability of random 
variable ~. Other symbols have the same sense as in Section 3. 

The third-order weak method is 

q 

Yk + , = Yk + h [ f  + GZ]k + h3/ZGk ~. b,-(~rk/2 + V,-t,) 
r = l  

+ h2[(f 'r+ (GZ) 'r)( f+ GZ) + GAZ]k/2 
q 

+ h '/2 ~ [(Gbr)'r ( f +  GZ)]k (~,.k/6 -- Vrk) 
r f f i l  

q 

+ h 5/2 ~. [f'rGb,. + GAbr + A,.{(GZ)'vf + (GZ)'r GZ} ]k 
~= t ( 4 . 2 )  

x (~k/6 + V~k) + h3L2[f+ GZ]k/6 
q 

Z k + l = Z k  + h l / 2  L br~rk + AZk h+h3/2A 
r~ |  

q 

x ~ brE~rk/2 + V~k] +h2AZk/2 
r = l  

q 

+ h 5/2A 2 ~ b r(~,'k/6 + V rk) + h 3A 3Z k/6 
r = l  

The independent random variables ~k and v,. k of (4.2) may be simulated as 
N(0, 1) and N(0, 1 /x /~ ) ,  respectively. Here N(0, A) is a Gaussian distribu- 
tion with zero mean value and standard deviation A. One can obtain the 
random variables ~r and Vr in another manner by the laws 

P(v - - 1 / v / ~  ) = e(v = 1/,#/~) = 1/2, 

P ( ~ =  - I ) = P ( ~ =  1)=3/10 

e(~ = o ) =  1/3, P ( ~ =  - , , / g ) =  e(~ = v/g) = 1/30 
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4.2. The Runge-Kut ta  Weak Schemes 

The second-order  explicit Runge -Ku t t a  method takes the form 

Yk+, = Yk +h{ [ f +  GZ]k + [ f +  GZ]~}/2 
q 

Zk  + I = Z k  q- h l/2 E b~ ~rk dr- hA [ Z;  + Zk ]/2 
r E ]  

where 

(4.3) 

f~ =f (Yf , ) ,  Gf, = G(Yf,), Y~ = Yk + ( f + GZ)k h 
q 

ZE=Zk-t-h 1/2 ~ br~rk + AZkh 
r = l  

The random variable ~r, are the same as in the scheme (4.1). 
Similar to the 5/2 Runge -Ku t t a  strong method (3.10), the third-order 

Runge-Kut t a  weak method may be obtained with r andom variables ~r* 
and Vrk as in the third-order explicit weak method (4.2). 

4.3. Weak Implicit  Methods 

The first-order implicit weak methods coincide with the Euler strong 
schemes (3.1 ! ), but independent r andom variables (~k may be simulated as 
P(~ = 1) = P(~ = - 1) = 1/2. 

The two-parameter  family of  second-order  implicit weak schemes has 
the form 

Yk+l= Yk +oth[f  +GZJk + ( 1 - c t ) h [ f  +GZ],+~ 
q 

+ h 3/2 y. Gk b,( 2~ - 1 ) ~r,/2 
r = l  

+ fl(20c - 1) hZL[ f+ GZ]k/2 + ( 1  - - f l ) (2a - -  1) hZL[ f+ GZ]k +,/2 

q (4.4) 
Zk+ 1 =Zk  + ~ br~khl/2 +othAZk + ( l  --o~) hAZk+ I 

r = l  

q 

+h 3/2 ~ Abr(2o~- 1) ~ , / 2  
r = l  

+ fl(2c~ - 1 ) h 2A 2Z k/2 + ( 1 - fl)( 2c~ - 1 ) h2A 2Z k + 1/2 

The random variables ~r, are the same as in the scheme (4.1), and 
O~<(x~< 1, O~<fl~< 1. 
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If parameter 0t in (4.4) is equal to 1/2, we obtain the trapezoidal weak 
method 

Yk + ~ = Yk + h{ [ f  + GZ]k + [ f  + GZ]k + ,} /2 
q (4 .5)  

Z k + l = Z k + h  1/2 ~ br~rk+hA[Zk+l +Zk ] /2  
r = l  

which is the simplest one among the family (4.4). 
It is also possible to derive weak implicit Runge-Kut.ta schemes. 

5. N U M E R I C A L  TESTS 

We test the presented numerical methods on the well-known Kubo 
oscillator with random frequency ~23"24~ 

dy/dt = iy(ogo + z( t) ) (5.1) 

where y is a complex variable and z(t) is the Ornstein-Uhlenbeck process 
as defined by (1.2)-(1.3). The Kubo oscillator has seen application in the 
theory of nuclear magnetic resonance. '23~ As mentioned in refs. 10 and 12, 
the complex equation (5.1) is an excellent choice for testing the quality of 
algorithms. It has analytic solution, so that one can compare the simula- 
tions with explicit formulas, ~24~ for instance, 

f2 y(t) = y(O) exp[io)ot + i -(t ')  dt'] (5.2a) 

yy* = 1 (5.2b) 

( y ( t )  ) = ( y ( 0 ) )  exp{ io9 o t - b2{ t - (1 - exp[ - a t ]  )/a} (2a2)} (5.2c) 

(u2(t))  = {((u(0) 2) -- (v(0)2))  cos(2Ogot) 

- -  (v(0) u(0)) sin(2co0 t)} 

xexp{ - b 2 [ t -  (1 - e x p [ - a t ] ) / a ] / a 2 } / 2 +  1/2 (5.2d) 

where u =  Rey  and v = I m y .  By the way, it is impossible to check all 
features of an algorithm by simulation of the Kubo oscillator which is 
linear with respect to y and symmetric. 

For the SDE (5.1) the vectors Y,f, br, etc., are given by 

 __(-OOoo :), o--(-:), 
q= 1, Z = z ,  b~ =b, A = - a  

- - ( .D  o - - Z  

(5.3) 

etc. 



706 Milshtein and Tret'yakov 

5.1. Strong Schemes Test 

We test ou r  s t rong  me t h o d s  by c o m p a r i n g  equal i ty  (5.2b) with a 
s imula ted  osci l la tor  t ra jec tory  (see Fig. 1). 

Accord ing  to Sect ion 2, the s t rong  a lgor i thms  for the S D E  (5.1) are 
wri t ten in the fol lowing form: 

Second-orde r  s t rong  scheme: 

coef l  = 1 -h2(o9o + 7.k)2/2 

coef2 = (~o o + Zk)h + bh3/2[ ~ k + t l k / x / ~ ] / 2  - -hEazk /2  

Uk + I = Uk coef l  -- vkcoef2 (5.4) 

Vk+ ] = Vk c ~  + UkCOef2 

Zk + I = Zk + hl/Eb~k - aZkh -- abh3/2[ ~k + r lk /X/~] /2  + h2aEzk/2 

~k a n d  r/k are i n d e p e n d e n t  r a n d o m  var iables  with s t a n d a r d  n o r m a l  dis- 
t r ibut ion .  

yy" 

1,020 

1.015 

1.010 

1.005 

1.000 

0.995 

1 

5 10 15 

Time 
20 

Fig. I. Test of strong methods. Time dependence of Kubo oscillator radius yy* for o~ o = 1, 
a=  1, b=0.33, u(0)=0, v(0)= I, h=0.1. One stochastic realization is simulated by (1) the 
second-order explicit scheme (5.4), (2) the trapezoidal method (5.6), and (3) the 5/2-order 
explicit scheme (5.5). Dashed line is the exact solution (5.2b). 
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5/2-0rder  s t rong  scheme:  

c o e f l  = 1 - h2(tOo + z , )2 /2  - bhS/2(COo + Z,)(~k + r / , /X/~) /2  

+ h3{ 3aZk(COo + Z,) --  b 2}/6 

coef2  = (090 + zk)h + bh3/2[~k + r / k / x / ~ ] / 2  - h2aZk/2 

- -  abh5/2{ ~ , /6  + rlk/(4 x~/~) -- (k/( 12 x//5) } 

+ h3{a2zk -- (CO o + Zk)3}/6 

Uk + ~ = Uk c o e f l  --  Vk coef2  

v,  + i = ok coef  I + Uk coef2  

Zk + I = Zk + hl/2b~k - az ,  h - abh3/2[ ~, + rlk/X//3]/2 + h2a2Zk/2 

+ a2bhS/2{ 4 , / 6  + r / J ( 4  x//3) - ~k/( 12 V/5)} --  haa3zk/6 

(5.5) 

~k, r/,  a n d  ( ,  are i n d e p e n d e n t  r a n d o m  va r i ab le s  wi th  s t a n d a r d  n o r m a l  
d i s t r ibu t ion .  

T r a p e z o i d a l  s t rong  scheme:  

y = 1/( 1 + hal2) 

c o e f l  = h(coo + Zk)/2 + brl ,h3/2/x /~ 

z , +  I = y[Zk(I  --ha~2) + b~,h I/2 - a b h 3 / 2 r l , / x / ~  

coef2  = h(coo + z ,  + ~ )/2 

u = 1/( 1 + coef22) 

c o e f l  1 = 1 --  coef2  c o e f l  

coef22 = c o e f l  + coef2  

u , +  1 = • c o e f l  1 --  o k coef22)  

ok+ l = • c o e f l  I + u ,  coef22)  

(5.6) 

~k a n d  rlk are  i n d e p e n d e n t  r a n d o m  var iab les  wi th  s t a n d a r d  n o r m a l  
d i s t r ibu t ion .  

T o  genera te  G a u s s i a n  r a n d o m  number s ,  we use p r o c e d u r e  G A S D E V  
from ref. 25. F i g u r e  1 d e m o n s t r a t e s  the t ime  dependence  of  the K u b o  
osc i l l a to r  r ad ius  yy* for  one  s tochas t ic  t r a j ec to ry  s imu la t ed  by  s t rong  
schemes  (5 .4)- (5 .6) .  I t  conf i rms  the cor rec tness  a n d  o rde r s  of  the me thods .  
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5.2. W e a k  Schemes  Test  

We test ou r  w e a k  m e t h o d s  by c o m p a r i n g  s imula t ions  of  the  S D E  (5.1) 

wi th  explici t  fo rmulas  (5.2b), (5.2c), and  (5.2d) (see tables  and  Fig. 2). 

A c c o r d i n g  to Sect ion  4, the w e a k  a lgo r i t hms  for the S D E  (5.1) a re  

rewri t ten  in the fo l lowing  form: 

S e c o n d - o r d e r  weak  scheme:  

c o e f l  = 1 - -  h2(o9o q- : k ) 2 / 2  

coef2  = (09 o + z , ) h  + bh3/2~,/2 - h2azk/2 

/ / k + l  = 

O k +  I = 

7 . k +  1 = 

~k are  i ndependen t  

laws P(~  = 0) = 2/3, 

T h i r d - o r d e r  weak  scheme:  

c o e f l  = 1 - t12(600 + z~)2/2 - hS/Zb(wo + z ) [ ~ k / 2  + vk] 

+ h3{ 3azk(o9o + zk) - b 2}/6 

coef2  = (09 0 + z )h  + h3/2b(~k/2 + vk) - h2azk/2 -- hS/2ab(~k/6 + vk) 

- ha{ (o9 0 + zk) 3 - a2zk}/6 

uk c o e f l  -- vk coef2  (5.7) 

v~. c o e f l  + u k coe f2  

z~. + h m b (  k - azkh -- abh3/2~k/2 + h 2 a 2 z j 2  

r a n d o m  var iab les  wi th  d i s t r ibu t ion  acco rd ing  to the 

P(~  = - x / ~ )  = P ( r  = v / 3 ) =  1/6. 

0 . 5  

3 

^ i ~o,o 
v 

- 0 . 5  t i i i i i i i i J 
1 5  2 0  2 5  

T i m e  

Fig. 2. Test of weak methods. Time dependence of mean value of u = Re y for co 0 = I, a = 1, 
b=0.33, u(0)=0, o(0)= I, h=0.3 with averages over 10,000 realizations. (1) The second- 
order explicit scheme (5.7), (2) the third-order explicit scheme (5.8), (3) the trapezoidal 
method (5.9). Dashed line is the exact solution (5.2c). The Monte Carlo error is 
approximately equal to 10--" and less than the method errors. 
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Uk + ~ = coef l  Uk -- coef2 Ok 

Vk+ ~ = coef l  ok + coef2 Uk 

Zk + I = Zk + h |/2b~k --  aZkh -- h3/2ab[ ~k/2 + Vk ] + h Ea2Zk/2 

+ aZbhS/2{~k/6 + Vk} --h3a3Zk/6 (5.8) 

~k and v k are independent  variables with dis t r ibut ions according to the 
laws 

P ( ~ = 0 ) =  1/3, P ( ~ =  - - x / / g ) = P ( ~ = v / - 6 )  "1/30 

e ( ~  = - 1) = P(~ = 1 ) = 3/10, 

P(v  = - - 1 / ~ / ~ ) =  P(v  = 1/,/77)= 1/2 

Trapezoida l  weak scheme: 

y =  1/(1 +ha~2)  

coef l  = h(o9 o + Zk)/2 

Zk + I = Y[Zk(1 -- ha/2 i  + b~kh 1/2] 

coef2 = h(o9 o + Zk +, )/2 

• = 1/( 1 + coef22) (5.9) 

coef l  1 = 1 --  coef2 coef l  

coef22 = coef l  + coef2 

uk +, = • coef l  I --  vk coef22) 

Vk + ~ = • coef l  1 + Uk coef22) 

The r andom variables (k are the same as in (5.7). 

To generate uniform r a n d o m  numbes  we use the procedure  R A N  I 
from ref. 25. The initial vaiue z(0) is s imulated as a Gauss ian  r a n d o m  
number  with zero mean and var iance b2/(2a). 

In Tables I and II  we present  s imulat ions of  mean values of  u = Re y 
for various steps h and var ious  numbers  of  stochastic realizat ions N. The 
values in Tables I and  II  approx ima te  ( i f ( t ) )  [ t i( t)  is the numerical  solu- 
t ion of  (5.1) given by weak schemes (5.7)-(5.9)]  calculated as 

1 N 
( t i ( t ) ) ' ~ - -  ~. ti(m)(t) gm=l 

~--~ ~ LN m~-- I (/~(m))2 (t) - m=l ~' l~(m)(t))211/2 (5.10) 
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Table I. 

Milshtein and Tret 'yakov 

Test of Weak Methods:  Computat ional  Results for Mean Value of 
u = R e y  for t = l O  ~ 

i= t air)(10) + 2 i=l [a(i)( 10)]2 

Explicit second Explicit third Trapezoidal 2[((u2(10))  
h N order order method -(u(lO))2)/N] j/2 

0.4 5,000 0.4748 4- 0.0173 0.3116 4- 0.0165 0.2609 4- 0.0174 0.0158 
0.2 5,000 0.36494-0.0167 0.33484-0.0169 0.31214-0.0170 0.0158 
0.1 5,000 0.3541 4-0.0166 0.3461 4-0.0167 0.34154-0.0166 0.0158 
0.05 5,000 0.3490 4- 0.0166 0.3456 4- 0.0166 0.3458 + 0.0166 0.0158 
0.2 100,000 0.3719 4- 0.0037 0.3318 4- 0.0037 0.3198 4- 0.0038 0.0035 
0.1 100,000 0.3499 4- 0.0037 0.3386 4- 0.0037 0.3372 4- 0.0037 0.0035 

,a, For COo= 1, a =  I, b=0.33, u(0)=0,  v(0)= 1, and various steps h with averages over N 
realizations. The exact solution is ( u ( 1 0 ) ) =  0.3333. 

i.e., ( i f ( t ) )  belongs to the interval defined by (5.10) with probability 0.95 
under the assumption that the sampling variance is sufficiently close to the 
variance of if(t). It is obvious that the values in the tables include first 
the error of the method and second the Monte Carlo error. If N ~  oo, 
then the Monte Carlo error diminishes and the difference between the value 

Table li. Test of Weak Methods:  Computat ional  Results for Mean Value of 
u =  Re y for t = 2 0  ~ 

[tiul(20)] 2 Ni~l  zil"(20) 4- 2 N i  I 

F l " -1,\ / -1,~ 
- / - x  )IN / t..Ni=l J ] !  J 

Explicit second Explicit third Trapezoidal 2[((u2(20))  
h N order order method -(u(20))2)/N] I/2 

0.2 5,000 
0.1 5,000 
0.05 5,000 
0.2 100,000 

-0.3589 _ 0.0179 -0.3435 +0.0175 -0.3422 +0.0177 0.0187 
-0.3604 + 0.0175 -0.3499 4-0.0174 -0.3566 4-0.0175 0.0187 
-0.3590 4- 0.0176 -0.3472 4- 0.0175 -0.3584 __. 0.0176 0.0187 
- 0.3588 4- 0.0040 - 0.3379 4- 0.0039 - 0.3415 4- 0.0040 0.0042 

~ For the same values as in Table I. The exact solution is (u(20))  = -0.3244. 
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Table III. Test of  W e a k  M e t h o d s .  The Kubo Osci l la tor  Radius S imula t ions  )~)~* 
for  t = 10 ~ 

,., 3 / "1  
Explicit second Explicit third Trapezoidal 

h N order order method Fox t12) 

0.4 5,000 1.1832 • 0.935 • 1.00036 • 
0.2 5,000 1.0163 • 0.99102 • 0.99998 • 
0.1 5,000 1.00063• 0.99885 • 1.00004 • 
0.05 5 ,000  0.99974• 0.999855• 1.000003• 
0.2 100,000 1.01613• 0.99101 • 1.00012 • 
0.1 100,000 1.00069• 0.998847• 1.000006• 

1.00321 

~ COo= 1, a=  1, b=0.33 (Fox 112) b2=0.1), u(0)=0, v(0)= 1, and various steps h with 
averages over N realizations. The exact solution is yy* --- 1. 

in the table and the exact solut ion tends to the method  error. Analyzing 
Tables  I, II, and Fig. 2, one can compare  the presented weak schemes and 
prove their correctness.  

Tables I I I  and  IV give averaged values for the K u b o  osci l lator  radius 
yy*. These results also prove the correctness of  the algori thms. One can see 
that  in some cases (for instance, T a b l e l I I ,  h = 0 . 4 ,  N = 5 0 0 0 )  the 
t rapezoida l  me thod  gives bet ter  results for the radius yy* than the second- 
and the th i rd-order  schemes. This is explained by the fact that  in contras t  
to the explicit  schemes (5.7), (5.8), the t rapezoida l  method  (5.9) exactly 
gives the expression (Yk Y* ) = 1, and  the method  error  for this moment  is 
equal  to zero. This is caused by the specific proper t ies  of  the SDE (5.1). 

Table IV. Test of  W e a k  M e t h o d s .  The Kubo Osci l la tor  Radius S imula t ions  for  
t = 20 ~ 

I ~ I(1 ~ I I ~py*"'(20)I-')/NI 'p- N , yy*u)(20)• N, ,[YY*u)(20)]2- ~ ,  

Explicit second Explicit third Trapezoidal 
h N order order method Fox t~2~ 

0.2 5,000 1.03257 • 0.9821 • 1.00012 • 
0.1 5.000 1.00134 • 0.997696• 1.000023• 
0.05 5,000 0.999498• 0.999710• 0.999999• 
0.2 I00,000 1.03273 • 0.98209 • 1.000037 • 

1.00990 

~ Same values as in Table III. 



712 Milshtein and Tret'yakov 

6. C O N C L U S I O N S  

Differential equations with colored noise have been investigated by 
van Kampen, I]) Horthemke and Lefever, 16~ Lindenberg, tg'9~ Fox, ~]~ 
Risken, ~241 and others. 

The present paper develops a constructive approach to numerical 
integration of differential equations with colored noise. We discuss two 
types of approximations of stochastic differential equations, strong and 
weak approximations. We present several strong schemes, including the 
5/2-order explicit method and Runge-Kutta and implicit algorithms. We 
also obtain various weak methods for the system with colored noise, 
namely up to third-order explicit schemes and Runge-Kutta and implicit 
methods. All of the presented algorithms are efficient as to simulation of 
the used random variables. For instance, in the case of the 5/2 strong order 
method for the system (1.1) with q colored noises one must simulate 3q 
Gaussian independent variables at each integration step and in the case of 
the third-weak-order scheme at each integration step one must generate 
only 2q independent random variables with simple distributions. We suc- 
ceeded in constructing efficient high-order methods because of the special 
properties of the system with colored noise. The higher-order methods 
cannot be efficient, even for this system. 

By the approach developed in this paper one can derive other weak 
and strong algorithms for the system with colored noise. It is also possible 
to consider nonautonomous systems with colored noise and to construct 
appropriate numerical methods. 

A P P E N D I X .  D E R I V A T I O N  OF THE S T R O N G  T R A P E Z O I D A L  
M E T H O D  

Derivation of the strong trapezoidal method is based on the proof of 
a family of strong implicit schemes which was presented in ref. 14. 

Using the Ito formula, we obtain 

r = l  

A Z J 2 =  A Z k +  l -- ~., A b , . I r k - h A 2 Z t , . + p 2  2 
r = l  

(A.1) 

where 
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p, = -- [G(Y(O,)) br]'r [f(Y(O,)) + G(Y(O,)) Z(O,)] dot dW~ 
r=l  k k 

_ ~. f,k+, s 
r = l  k k 

(A.2) 

q ;?+';7 t 9 2 =  ~ 2 2 3 - A brlo~k-A Z(O,)dO, dO 
r = l  k k 

Using the properties of stochastic integrals, one can obtain 

(Pi) = O(h2), [ (p2 )  ] ,/2 = 0(h3/2), i = 1, 2 (A.3) 

Retaining the terms [ f +  GZ],/2 and AZ,/2 in the right-hand sides of the 
second-order explicit method (3.4) and subsituting (A.1) in (3.4), we obtain 
the approximation 

Yk+l = Y k + h { [ f +  GZ]k+ [ f +  GZ]k+,}/2 
q 

+ ~ Gkbr[I~o~-Ir, h/2 ] +hp, 
r = l  

q 

Zk+,=Zk+ Z brI,,+hA[Zk+Zk+,]/2 
r=l  
q 

+A ~ b~[I~ok-l~kh/2]+hpz 
r = l  

(A.4) 

From (A.3) it follows that 

(hpi) = O(h3) ,  [ (h2p2) ] t/2 = O(hS/2), i =  I, 2 (A.5) 

Then by Theorem 1 (see Section2), using (A.5) and the fact that the 
scheme (3.4) is a second-strong-order method, one can prove that the 
strong order of the method, based on the approximation (A.4), is equal to 
2 on the whole interval. 

To realize the trapezoidal method, which is obtained from (A.4) by 
droping remainders, one must be able to calculate Ito integrals lr and lro, 
which are Gaussian random variables. It is easy to obtain that 

( I r )  = ( I r o  ) = 0 ,  ( I ~ )  =h ,  
(A.6) 

<I~o> =h3/3, </rLo> =h2/2 
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Using two independent standard Gaussian random variables ~r and r/r, we 
can simulate these integrals in the following way: 

I ,  = h 1/2~ r, Iro = h3/2(~ + q J x / ~ ) / 2  (A.7) 

Substituting (A.7) in the approximation (A.4) and dropping remainders, we 
obtain the trapezoidal method (3.15), which has the second strong order 
on the whole interval. 

REFERENCES 

1. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, 
Amsterdam, 1984). 

2. F. Moss and P. V. E. McClintock, eds., Noise in Nonlinear Dynamical Systems, Vols. I, 
II, II1 (Cambridge University Press, Cambridge, 1989). 

3. A. Schenzle and R. Graham, Phys. Lett. A 98:319 (1983); P. Lett, R. Short, and 
L. Mandel, Phys. Rev. Lett. 52:34 (1984); R. F. Fox and R. Roy, Phys. Rev. A 35:1838 
(1987); P. Jung and P. H~inggi, Phys. Rev. A 35:4464 (1987); Shigun Zu, Phys. Rev. A 
40:3441 (1989). 

4. G. Nicolis and F. Baras, J. Stat. Phys. 48:1071 (1987); S. P. Fedotov and M. V. 
Tret'yakov, Combust. Sci. Technol. 78:1 ( 1991 ). 

5. A. S. Mikhailov, Phys. Lett. A 73:143 (1979); R. Miwail, T. Ognean, and S. Straja, Hung. 
J. Indust. Chem. 15:55 (1987). 

6. W. Horthemke and R. Lefever, Noise-lnduced Transitions (Springer-Verlag, Berlin, 1984). 
7. C. W. Gardiner, Handbook of Stochastic Methods, 2nd ed. (Springer-Verlag, Berlin, 1985). 
8. P. H~inggi, F. Marchesoni, and P. Grigolini, Z. Phys. B 56:333 (1984); J. Masoliver, B. J. 

West, and K. Lindenberg, Phys. Reo. A 35:3086 (1987); C. R. Doerling, P. S. Hagan, and 
C. D. Levermore, Phys. Reo. Lett. 59:2129 (1987); Th. Leiber, and H. Risken, Phys. 
Reo. A 38:3789 (1988); L. Hannibal, Phys. Lett. A 145:220 (1990). 

9. K. Lindenberg, L. Pamirez-Pascina, J. M. Sancho, and F. J. de la Rubia, Phys. Reo. A 
40:4157 (1989); P. H~inggi, R. Roy, and A. W. Yu, J. Star. Phys. 54:1367 (1989). 

10. R. F. Fox, R. Roy, and A. W. Yu, J. Stat. Phys. 46:477 (1987); 58:395 (1990). 
I I. R. Mannella, in Noise in Nonlinear Dynamical Systems, F. Moss and P. V. E. McClintock, 

eds., Vol. III (Cambridge University Press, Cambridge, 1989), Chapter 7; R. Mannela and 
V. Palleshi, Phys. Reo. A 40:3381 (1989). 

12. R. F. Fox, Phys. Reo. A 43:2649 (1991). 
13. J. M. Sancho, M. San Miguel, S. L. Katz, and J. Gunton,  Phys. Reo. A 26:1589 (1982). 
14. G. N. Milshtein, The Numerical Integration of  Stochastic Differential Equations (Ural 

University Press, Sverdlovsk, 1988). 
15. P. E. Kloeden and E. Platen, Numerical Solution of  Stochastic Differential Equations 

(Springer-Verlag, Berlin, 1992). 
16. G. N. Milshtein, Theor. Prob. Appl. 19:557 (1974). 
17. W. Wagner and E. Platen, Preprint ZIMM (Akademie der Wissenschaft der DDR, Berlin, 

1978); E. Platen, Lietuoos Matem. Rink 21:121 (1981); E. Platen and W. Wagner, Prob. 
Math. Star. 3:37 (1982). 

18. G. N. Milshtein, Theor. Prob. Appl. 23:396 (1978). 



Differential Equations with Colored Noise 715 

19. G. N. Milshtein, Theor. Prob. Appl. 30:750 (1985). 
20. E. Pardoux and D. Talay, Acta Appl. Math. 3:23 (1985). 
2]. G. N. Milshtein, Theor. Prob. Appl. 32:738 (1987). 
22. R. F. Fox, I. R. Garland, R. and Roy, G. Vemuri, Phys. Rev. A 38:5938 (1988). 
23. R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics H (Springer-Verlag, Berlin, 

1985). 
24. H. Risken, The Fokker-Planck Equation (Springer-Verlag, Berlin, 1984). 
25. W. H. Press, W. T. Vetterling, S. A. Teukolsky, and B. P. Flannery, Numerical Recipes 

(Cambridge University Press, Cambridge, 1986). 


